suite du super-thm

Cours 5.2 10,10,24

Det de matrices elem. n

5) det
$$(D_i(k)) = k$$

$$det \left(\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \right)$$
 jeue [Igre

12ien (kto)

6) det (E_{i,j}(h))

jène colonne 1 Li, j E 10 j = j

= det ()

k lave ligre

< 1

7) det (Pi,j) =

ハとはらい

Roppel: Addendum:

AEDnxn (R)

E matrice étém.

Vi,j i±j

et A la matrice obt en taisont la mêre opélém que E alers $A = E \cdot A$

de la en dédeit

5) $\forall k \neq 0$ $A' = D_i(k) A$ superthy $\det(A') = \det(D_i(k)) \det(A) = k \det(A)$

6) YLER A' = E, (h) A olors $det(A^1) = det(A)$

 $7') \forall i,j \quad i \neq j \quad A' = P_{i,j} \cdot A$

ders det(A) = - det(A)

Consègnence: On peut calculer det (A) en echelonnant A per aus opetem en tenant carple des déterminants du Opèlèm utilitées: Portant de A on fait p opélém: A wo En Eze, A wo wo Epi Eze, A = U Ains) U=Ep.EEA matrice echebarée det (U) = det (Ep) ... det (Er) det (E) det (A) (U = upper trianguler) det (U) det (A) = II det (Ei)

A =
$$\begin{pmatrix} 3 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ 3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{pmatrix}$$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ -2 & 10 & 10 \\ 0 & 0 & -3 & 2 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ -4 & 3 & 4 \\ -4 & 3 & 4 \\ -4 & 3 & 4 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A ~ $\begin{pmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

$$\frac{1}{x}$$
 $\frac{1}{x}$ $\frac{1}$

Problème: le ca/cul de A-1 est cher.

Règle de C	raner (pour le	cal	cul de	e la	<i>→</i>
soit Aen,	0×nCR)	\	sol.	de A	2=13	2 /
inerible	et 5	FRY) ,	loc		
Munique solu	Non 2	de	Aze	=2	Q.	bor
lee socder	1000					
~ ,	= det	(Ailb))			
	ط	& (A)		K ca 2	determ	inants.
ou A; (b) =	$\left(\widehat{a}\right) $,	\overrightarrow{a}		
					,	
			0 0			
		lex	cleni	e de A	B	
7	\)					

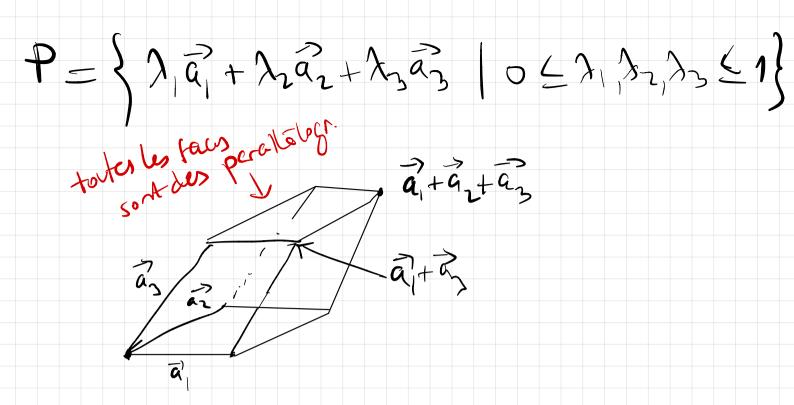
bien protège pour calculer 1 cos données

(sons deus) su demande Remarque: Multiplier (ne ligre (on colonne) de A par LER multiplie le del(A) par le danc pour $A \in M_{n \times n}(\mathbb{R})$ $dut(kA) = k^n det(A)$ donc le det se comporte conne ure surface den R2

 $|1\rangle | \times 2$ $|1\rangle | \times 2$ $|1\rangle | \times 2$ $|2\rangle | \times 2$ Vol = 1

S33 Interprétation geom. du déterminant Def: a, a ER ved (colonne) 1) le parallélogramme engendre par à et à $P = \{ \lambda \vec{a}, + \mu \vec{a} \} \setminus 0 \leq \lambda, \mu \leq 1 \} \subset \mathbb{R}$ $\vec{a}_1 + \vec{a}_2 + \lambda = 1 = \mu$ $\vec{a}_1 = \lambda = 1$ $\mu = 0$ Rappel: Aire (P) = base x hanteur 2) $\vec{a}_1 \vec{a}_2 \vec{a}_3 \in \mathbb{R}^3$

le paralléllépipede engendré par à, à, à, à, às



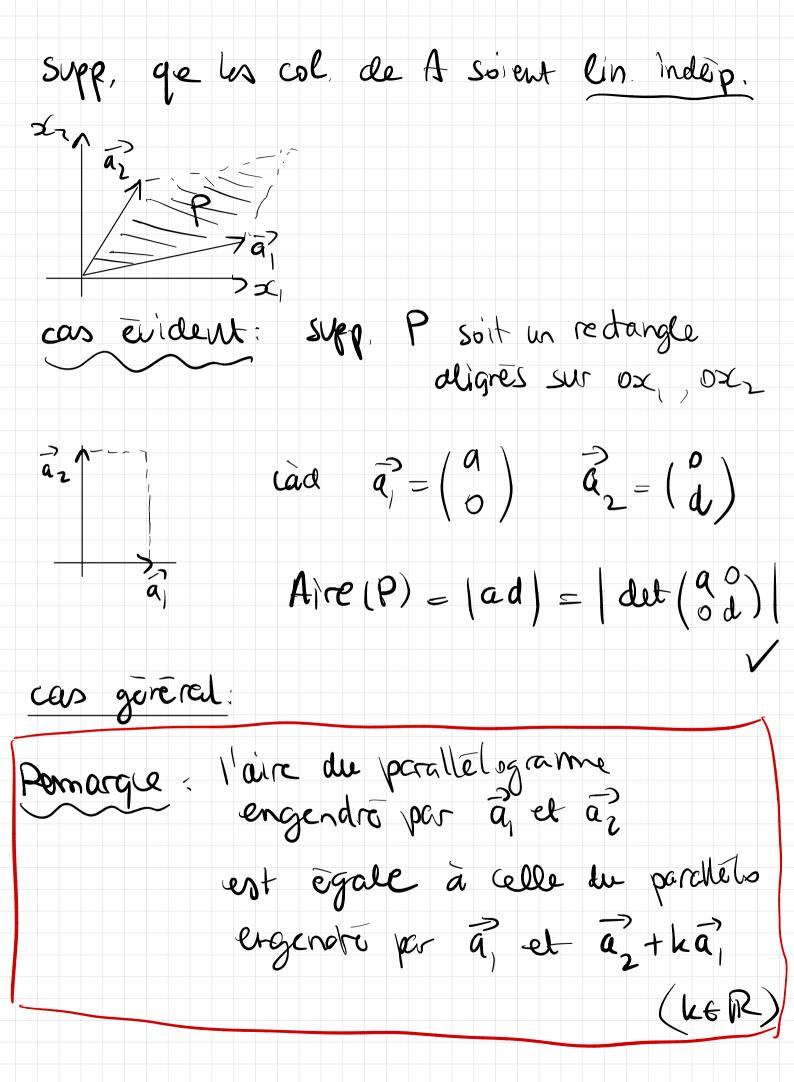
Rappel: Vol(P) = Aire (base) > hauteur

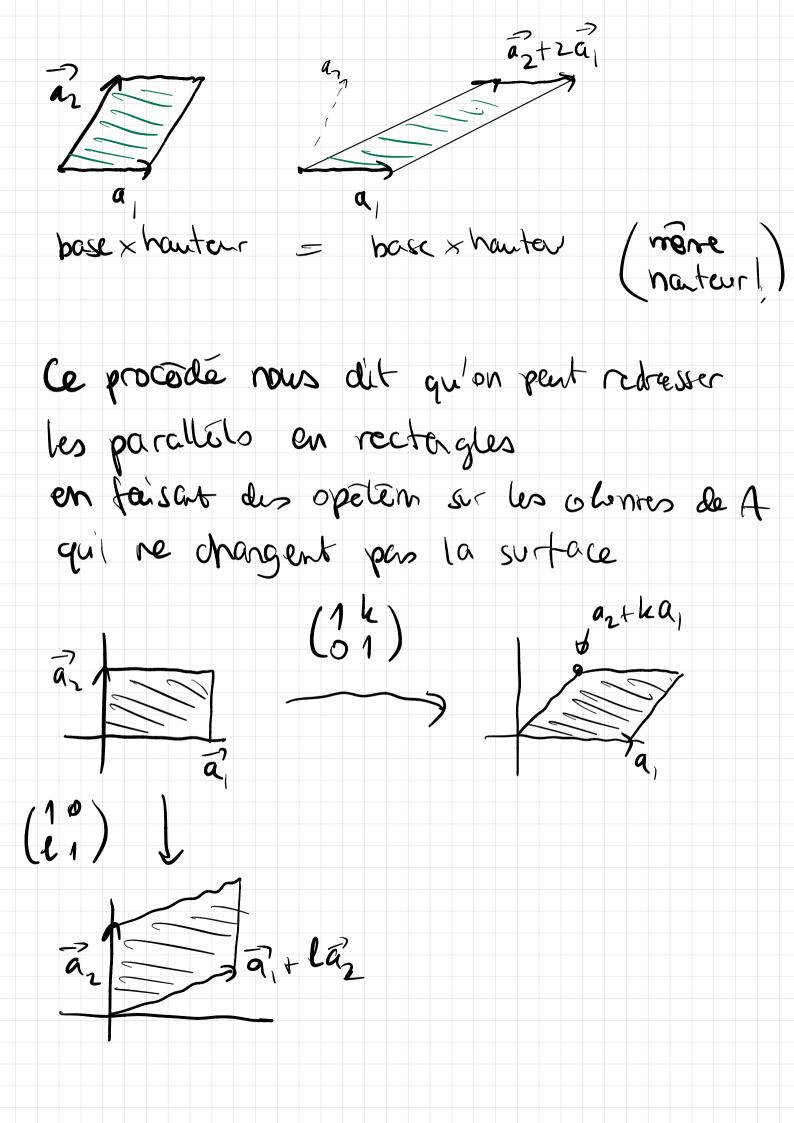
Vol (9) 70

ure base un perallelogramme

On a le résultat suivent:

114	اکا ۱ کار	ive .	20117	YVOYY)				
1) <i>f</i> S	\er	2×2	R)	et	\vec{a}_{ij}	a ₂ €	RZ	Sej	Sonnes
3	0/(١	e pas	aw) em	j, par	a,	et q:	i
al	20CS	Aire	(P)	=	det	(A)			
							r v	aleurabso	lue
L) '	1 6 0	3×3	.)	ر حرا) (2)) 'J	762	OLON	167
F	le	paral	lepi pec	e e	rg.	bor	9,	\vec{c}_{i}	-> a ₃
a	Dr.								
	locs Ve	ol (P)) =	det	-(A)		aleur	absoli	ue!
	<u> </u>	\sim							
a) r	7=2	٤	upp.	a ,	~> a ₂	lin	de	pen	dente
alı	z ā	et é	2 sont	al gr					ayah
	/a	Par	-		d	na	Aire	(P)	=0
_	Va	1				et 0	let (A) =	-0





Donc, en externant A= (a, a) par des opélém de type Ei, ili) et de type Pij (qui re chagent pers (det(A))) on re charge pas l'aire du parallels. (ab) opelow (a'o)redorgle | det (ab) | = | det (a o) | = | a'a' | = Aire (P') =Aire (P) cas n=3: analogue afd. A = (\(\bar{a}\); \(\alpha\); $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = A'$ r parellellepipide

Vol(P) = Vol(P') =
$$|a|bc'|$$
 = $|det(A')|$
= $|det(A)|$
Romarque.
Tout cela se gererclise à R:
On peut di (n'n) r le parallélotope engentré par \widehat{a}_{1}^{2} , \widehat{a}_{0}^{2}
 $P = \int \lambda_{1}\widehat{a}_{1}^{2} + \lambda_{2}\widehat{a}_{1}^{2} + \lambda_{3}\widehat{a}_{1}^{2} = \int \lambda_{1}\widehat{a}_{1}^{2} + \lambda_{3}\widehat{a}_{1}^{2} + \lambda_{4}\widehat{a}_{1}^{2} = \int \lambda_{1}\widehat{a}_{1}^{2} + \lambda_{4}\widehat{a}_{1}^{2} + \lambda_{5}\widehat{a}_{1}^{2} + \lambda_{5}\widehat{a}_{1}^$

1 Arche de la défense, Paris (1989) projection de 1 hyper-cube dans R's OME 16 somnets polytope réguler en d'un 4. 32 arêtes 24 tous 8 cubes (ceci n'est pas demandé à l'examen!)